我们知道在 C++ 里面系统是没有矩阵计算的,你需要用一些第三方的库才可以。
这里我们自己来写一个,当然这里用的是 python 来实现,但是 C++ 来实现的话也是很类似的。
# Write a function 'kalman_filter' that implements a multi- # dimensional Kalman Filter for the example given from math import * class matrix: # implements basic operations of a matrix class def __init__(self, value): self.value = value self.dimx = len(value) self.dimy = len(value[0]) if value == [[]]: self.dimx = 0我们用面向对象的一个 matrix 类来代表一个矩阵。 value 应该是一个二位数组。
def zero(self, dimx, dimy): # check if valid dimensions if dimx < 1 or dimy < 1: raise ValueError, "Invalid size of matrix" else: self.dimx = dimx self.dimy = dimy self.value = [[0 for row in range(dimy)] for col in range(dimx)]
def identity(self, dim): # check if valid dimension if dim < 1: raise ValueError, "Invalid size of matrix" else: self.dimx = dim self.dimy = dim self.value = [[0 for row in range(dim)] for col in range(dim)] for i in range(dim): self.value[i][i] = 1
def show(self): for i in range(self.dimx): print(self.value[i]) print(' ')
def __add__(self, other): # check if correct dimensions if self.dimx != other.dimx or self.dimy != other.dimy: raise ValueError, "Matrices must be of equal dimensions to add" else: # add if correct dimensions res = matrix([[]]) res.zero(self.dimx, self.dimy) for i in range(self.dimx): for j in range(self.dimy): res.value[i][j] = self.value[i][j] + other.value[i][j] return res重载加法,被加数与加数大小一致,返回一个新的矩阵
def __sub__(self, other): # check if correct dimensions if self.dimx != other.dimx or self.dimy != other.dimy: raise ValueError, "Matrices must be of equal dimensions to subtract" else: # subtract if correct dimensions res = matrix([[]]) res.zero(self.dimx, self.dimy) for i in range(self.dimx): for j in range(self.dimy): res.value[i][j] = self.value[i][j] - other.value[i][j] return res
def __mul__(self, other): # check if correct dimensions if self.dimy != other.dimx: raise ValueError, "Matrices must be m*n and n*p to multiply" else: # multiply if correct dimensions res = matrix([[]]) res.zero(self.dimx, other.dimy) for i in range(self.dimx): for j in range(other.dimy): for k in range(self.dimy): res.value[i][j] += self.value[i][k] * other.value[k][j] return res
def transpose(self): # compute transpose res = matrix([[]]) res.zero(self.dimy, self.dimx) for i in range(self.dimx): for j in range(self.dimy): res.value[j][i] = self.value[i][j] return res # Thanks to Ernesto P. Adorio for use of Cholesky and CholeskyInverse functions矩阵转置
def Cholesky(self, ztol = 1.0e-5): # Computes the upper triangular Cholesky factorization of # a positive definite matrix. res = matrix([[]]) res.zero(self.dimx, self.dimx) for i in range(self.dimx): S = sum([(res.value[k][i])**2 for k in range(i)]) d = self.value[i][i] - S if abs(d) < ztol: res.value[i][i] = 0.0 else: if d < 0.0: raise ValueError, "Matrix not positive-definite" res.value[i][i] = sqrt(d) for j in range(i+1, self.dimx): S = sum([res.value[k][i] * res.value[k][j] for k in range(self.dimx)]) if abs(S) < ztol: S = 0.0 res.value[i][j] = (self.value[i][j] - S)/res.value[i][i] return res def CholeskyInverse(self): # Computes inverse of matrix given its Cholesky upper Triangular # decomposition of matrix. res = matrix([[]]) res.zero(self.dimx, self.dimx) # Backward step for inverse. for j in reversed(range(self.dimx)): tjj = self.value[j][j] S = sum([self.value[j][k]*res.value[j][k] for k in range(j+1, self.dimx)]) res.value[j][j] = 1.0/tjj**2 - S/tjj for i in reversed(range(j)): res.value[j][i] = res.value[i][j] = -sum([self.value[i][k]*res.value[k][j] for k in range(i+1, self.dimx)])/self.value[i][i] return res def inverse(self): aux = self.Cholesky() res = aux.CholeskyInverse() return res
def __repr__(self): return repr(self.value)获取矩阵的值-- 字符串形式