在搭建自己的深度神经网络的时候,我们完全可以借鉴别人已有的成功经验,比如 ALEX NET,VGG NET, RESNET,等等。
这种方法就叫做 迁移学习 transfer learning
什么时候,以及我们应该如何迁移?
对于不同的任务我们要采用不同的策略。
如果你有一个来自很大数据集(百万级以上)的已经训练好的模型,当你面对自己的训练集来完成你的目的时,
1. 你的训练集很大,训练任务很相似。
==> 复制已有的模型结构,以已经训练好的模型为开始状态,在你的训练集上继续训练(fine tune)
2. 你的训练集很大,训练任务不相似。
==> 复制已有的模型结构,重新开始训练(或者 fine tune 也可以)
3. 你的训练集很小,任务很相似。
==> 复制已有的结构模型,只在最后一层改为你需要的输出,冻结前面所有的模型参数,只训练最后输出层的参数
4. 你的训练集很小,训练任务不相似。
==> 无他,重新设计你的模型并开始训练(迁移学习也无解)
import numpy as np
import tensorflow as tf
net_data = np.load("bvlc-alexnet.npy", encoding="latin1").item()
def conv(input, kernel, biases, k_h, k_w, c_o, s_h, s_w, padding="VALID", group=1):
'''
From https://github.com/ethereon/caffe-tensorflow
'''
c_i = input.get_shape()[-1]
assert c_i % group == 0
assert c_o % group == 0
convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding)
if tf.__version__ < "1.0.0":
if group == 1:
conv = convolve(input, kernel)
else:
input_groups = tf.split(3, group, input)
kernel_groups = tf.split(3, group, kernel)
output_groups = [convolve(i, k) for i, k in zip(input_groups, kernel_groups)]
conv = tf.concat(3, output_groups)
else:
if group == 1:
conv = convolve(input, kernel)
else:
input_groups = tf.split(input, group, 3)
kernel_groups = tf.split(kernel, group, 3)
output_groups = [convolve(i, k) for i, k in zip(input_groups, kernel_groups)]
conv = tf.concat(output_groups, 3)
return tf.reshape(tf.nn.bias_add(conv, biases), [-1] + conv.get_shape().as_list()[1:])
def AlexNet(features, feature_extract=False):
"""
Builds an AlexNet model, loads pretrained weights
"""
# conv1
# conv(11, 11, 96, 4, 4, padding='VALID', name='conv1')
k_h = 11
k_w = 11
c_o = 96
s_h = 4
s_w = 4
conv1W = tf.Variable(net_data["conv1"][0])
conv1b = tf.Variable(net_data["conv1"][1])
conv1_in = conv(features, conv1W, conv1b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=1)
conv1 = tf.nn.relu(conv1_in)
# lrn1
# lrn(2, 2e-05, 0.75, name='norm1')
radius = 2
alpha = 2e-05
beta = 0.75
bias = 1.0
lrn1 = tf.nn.local_response_normalization(conv1, depth_radius=radius, alpha=alpha, beta=beta, bias=bias)
# maxpool1
# max_pool(3, 3, 2, 2, padding='VALID', name='pool1')
k_h = 3
k_w = 3
s_h = 2
s_w = 2
padding = 'VALID'
maxpool1 = tf.nn.max_pool(lrn1, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding)
# conv2
# conv(5, 5, 256, 1, 1, group=2, name='conv2')
k_h = 5
k_w = 5
c_o = 256
s_h = 1
s_w = 1
group = 2
conv2W = tf.Variable(net_data["conv2"][0])
conv2b = tf.Variable(net_data["conv2"][1])
conv2_in = conv(maxpool1, conv2W, conv2b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group)
conv2 = tf.nn.relu(conv2_in)
# lrn2
# lrn(2, 2e-05, 0.75, name='norm2')
radius = 2
alpha = 2e-05
beta = 0.75
bias = 1.0
lrn2 = tf.nn.local_response_normalization(conv2, depth_radius=radius, alpha=alpha, beta=beta, bias=bias)
# maxpool2
# max_pool(3, 3, 2, 2, padding='VALID', name='pool2')
k_h = 3
k_w = 3
s_h = 2
s_w = 2
padding = 'VALID'
maxpool2 = tf.nn.max_pool(lrn2, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding)
# conv3
# conv(3, 3, 384, 1, 1, name='conv3')
k_h = 3
k_w = 3
c_o = 384
s_h = 1
s_w = 1
group = 1
conv3W = tf.Variable(net_data["conv3"][0])
conv3b = tf.Variable(net_data["conv3"][1])
conv3_in = conv(maxpool2, conv3W, conv3b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group)
conv3 = tf.nn.relu(conv3_in)
# conv4
# conv(3, 3, 384, 1, 1, group=2, name='conv4')
k_h = 3
k_w = 3
c_o = 384
s_h = 1
s_w = 1
group = 2
conv4W = tf.Variable(net_data["conv4"][0])
conv4b = tf.Variable(net_data["conv4"][1])
conv4_in = conv(conv3, conv4W, conv4b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group)
conv4 = tf.nn.relu(conv4_in)
# conv5
# conv(3, 3, 256, 1, 1, group=2, name='conv5')
k_h = 3
k_w = 3
c_o = 256
s_h = 1
s_w = 1
group = 2
conv5W = tf.Variable(net_data["conv5"][0])
conv5b = tf.Variable(net_data["conv5"][1])
conv5_in = conv(conv4, conv5W, conv5b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group)
conv5 = tf.nn.relu(conv5_in)
# maxpool5
# max_pool(3, 3, 2, 2, padding='VALID', name='pool5')
k_h = 3
k_w = 3
s_h = 2
s_w = 2
padding = 'VALID'
maxpool5 = tf.nn.max_pool(conv5, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding)
# fc6, 4096
fc6W = tf.Variable(net_data["fc6"][0])
fc6b = tf.Variable(net_data["fc6"][1])
flat5 = tf.reshape(maxpool5, [-1, int(np.prod(maxpool5.get_shape()[1:]))])
fc6 = tf.nn.relu(tf.matmul(flat5, fc6W) + fc6b)
# fc7, 4096
fc7W = tf.Variable(net_data["fc7"][0])
fc7b = tf.Variable(net_data["fc7"][1])
fc7 = tf.nn.relu(tf.matmul(fc6, fc7W) + fc7b)
if feature_extract:
return fc7
# fc8, 1000
fc8W = tf.Variable(net_data["fc8"][0])
fc8b = tf.Variable(net_data["fc8"][1])
logits = tf.matmul(fc7, fc8W) + fc8b
probabilities = tf.nn.softmax(logits)
return probabilities
import time
import tensorflow as tf
import numpy as np
import pandas as pd
from scipy.misc import imread
from alexnet import AlexNet
sign_names = pd.read_csv('signnames.csv')
nb_classes = 43
x = tf.placeholder(tf.float32, (None, 32, 32, 3))
resized = tf.image.resize_images(x, (227, 227))
# Returns the second final layer of the AlexNet model,
# this allows us to redo the last layer specifically for
# traffic signs model.
fc7 = AlexNet(resized, feature_extract=True)
shape = (fc7.get_shape().as_list()[-1], nb_classes)
fc8W = tf.Variable(tf.truncated_normal(shape, stddev=1e-2))
fc8b = tf.Variable(tf.zeros(nb_classes))
logits = tf.nn.xw_plus_b(fc7, fc8W, fc8b)
probs = tf.nn.softmax(logits)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
# Read Images
im1 = imread("construction.jpg").astype(np.float32)
im1 = im1 - np.mean(im1)
im2 = imread("stop.jpg").astype(np.float32)
im2 = im2 - np.mean(im2)
# Run Inference
t = time.time()
output = sess.run(probs, feed_dict={x: [im1, im2]})
# Print Output
for input_im_ind in range(output.shape[0]):
inds = np.argsort(output)[input_im_ind, :]
print("Image", input_im_ind)
for i in range(5):
print("%s: %.3f" % (sign_names.ix[inds[-1 - i]][1], output[input_im_ind, inds[-1 - i]]))
print()
print("Time: %.3f seconds" % (time.time() - t))